

Advanced optical techniques for fan deformation and noise propagation measurements

CA3ViAR Dissemination Event #1

September 6th, 2022 Hannover, Germany Jan Goessling, Joerg R. Seume Institute of Turbomachinery and Fluid Dynamics Leibniz University Hannover

Institute of Turbomachinery and Fluid Dynamics

Prof. Dr. Seume

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Agenda

- 1) Motivation
- 2) Digital Image Correlation (DIC) for deformation measurements
- 3) Pressure-Sensitive Paint (PSP) for acoustic measurements
- 4) Conclusions and Outlook

Project partners

Jan Gößling September 6th, 2022 slide 2 / 37

CA3ViAR DE #1

Advanced optical

- techniques for fan
- deformation and noise
- propagation
- measurements

Motivation

DIC

- PSP
- Conclusions

Motivation

Design trends of future turbofan engines

- increase bypass ratio to reduce specific fuel consumption •
- shorten intake to reduce weight and wetted intake surface •
- reduce weight by fiber composites ٠

Structural design challenges

- slender and highly loaded blades
- hot-to-cold shape transformation ٠
- reduced stall margin with increased risk of flutter ٠

Noise emission

- stringent requirements ٠
- but short intake increases noise emission ٠
- cut-off fan design
- decreased rotational speed \geq

LEAP-1C [1]

Universität Hannover

Jan Gößling September 6th, 2022 slide 3 / 37

Experimental investigations mandatory to validate design tools and engine performance.

Fan noise

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Deformation measurements by Digital Image Correlation (DIC)

Jan Gößling September 6th, 2022 slide 4 / 37

CA3ViAR DE #1

- Advanced optical
- techniques for fan
- deformation and noise
- propagation
- measurements

Motivation

- DIC
- PSP
- Conclusions

Digital Image Correlation (DIC) – Idea

Method DIC: Idea: Optical measurement technique for spatial deformation vs. reference Deformation measurements of loaded rotor blades

Target measurements

- blade geometry
- hot-to-cold shape transformation
- vibration due to forced response and flutter

Difficult measurement condition due to fast rotation and small vibration amplitudes:

- short exposure time $t < 1.7 \mu s$ to eliminate motion blur
- high frame rate f > 1000 Hz to resolve vibration
- high spatial resolution, cameras limited to 1 MPx

Jan Gößling September 6th, 2022 **slide 5 / 37** © Leibniz Universität Hannover 2022

New high-speed DIC setup required to measure both deformation and vibration. \rightarrow Pre-Tests

CA3ViAR DE #1

Advanced optical

- techniques for fan
- deformation and noise

1)

2)

3)

4)

- propagation
- measurements

Motivation

- DIC
- PSP
- Conclusions

Jan Gößling September 6th, 2022 **slide 6 / 37** © Leibniz Universität Hannover 2022

Greyscale signature of an image

Calculate displacement relative to reference position

Digital Image Correlation (DIC) – Principle

Calibrate camera system

Find corresponding points/subsets

Triangulate: Recover the 3D position

Principle

Triangulation

CA3ViAR DE #1

Advanced optical

Digital Image Correlation (DIC) – Hardware

Hardware for high-speed DIC

Advanced optical	Camera	Photron SA-X2	Photron SA-3
techniques for fan	Cambra		
deformation and noise	Resolution	1024x1024 Pixel	1024x1024 Pixel
propagation	Frame rate	12.500 Hz	2000 Hz
measurements	Min. exposure time	1 µs	2 µs
	Max. no. of images	21839	2726

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 slide 7 / 37 © Leibniz Universität Hannover 2022

Use a pulsed high-speed laser to decrease exposure time and improve camera synchronisation.

Laser Wave length Pulse rate

Pulse width

Terra PIV 527-100-M

527 nm 1.000-10.000 Hz < 210 ns

CA3ViAR DE #1

- Advanced optical
- techniques for fan
- deformation and noise
- propagation
- measurements

Motivation

- DIC
- PSP
- Conclusions

Jan Gößling September 6th, 2022 slide 8 / 37

© Leibniz Universität Hannover 2022

٠

٠

٠

—

Digital Image Correlation (DIC) – Bending beam

Test measurement using a bending beam

test of different speckle pattern

comparison of DIC results with

reference data in time and frequency domain

modal analysis calculated using FEM

measurement of vibration

Gößling MS Thesis, 2020

CA3ViAR DE #1

Advanced optical techniques for fan

deformation and noise

propagation

measurements

Motivation DIC PSP

Conclusions

Jan Gößling September 6th, 2022 slide 9 / 37

Digital Image Correlation (DIC) – Bending beam

Measurement results in frequency domain

- detection of 3 peaks up to a frequency of 250 Hz ٠
- amplitude of first peak within measurement uncertainties ٠
- underestimated amplitude of low amplitude peaks ٠
- Spatial deformation pattern agrees with mode shape from FEM. \geq
- © Leibniz Universität Hannover 2022

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 **slide 10 / 37** © Leibniz Universität Hannover 2022

Digital Image Correlation (DIC) – Axial blower

An axial blower is used to test on a rotating object similar to CA3ViAR fan.

Specifications

- max. rotational speed: 1000 RPM
- diameter: 1 m
- no. of blades: 5
- speckle pattern with 5 mm dot diameter

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 slide 11 / 37

© Leibniz Universität Hannover 2022

Digital Image Correlation (DIC) – Axial blower

Data analysis method

- correlation and triangulation with commercial software Vic-3D 8
- further data analysis required for rotor plane alignment and rigid body rotation elimination
- fast Fourier Transform to transform into frequency domain.

OoP: Out-of-Plane IP: In-Plane

CA3ViAR DE #1

- Advanced optical
- techniques for fan
- deformation and noise
- propagation
- measurements

Motivation

- PSP
- Conclusions

Digital Image Correlation (DIC) – Axial blower

Deformation at blade tip for different rotational speeds

Jan Gößling September 6th, 2022 slide 12 / 37

- Deformation depends on rotational speed, as expected:
- increased deformation at higher rotational speeds
- constant mean deformation at constant rotational speeds
- increase in oscillation due to blower shut-off in measurement 3

Digital Image Correlation (DIC) – Axial blower

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

Frequency spectrum of measurement 3 due to forced excitation by rapid shut-off of blower

Specific peaks in frequency response!

Frequency peaks agree with eigenfrequencies measured by accelerometer at rest \rightarrow detailed spatial analysis

Jan Gößling September 6th, 2022 slide 13 / 37 © Leibniz Universität Hannover 2022

CA3ViAR DE #1

- Advanced optical
- techniques for fan
- deformation and noise
- propagation
- measurements
- Motivation
- DIC
- PSP
- Conclusions

Digital Image Correlation (DIC) – Axial blower

Displacement of OoP vibration pattern at 12.5 Hz:

Analysis of pattern reveals rigid-body gyration of rotor due to elasticity of support of bearing housing.

Jan Gößling September 6th, 2022 **slide 14 / 37** © Leibniz Universität Hannover 2022

CA3ViAR DE #1

- Advanced optical
- techniques for fan
- deformation and noise
- propagation
- measurements
- Motivation
- DIC
- PSP
- Conclusions

Jan Gößling September 6th, 2022 slide 15 / 37

© Leibniz Universität Hannover 2022

Digital Image Correlation (DIC) – Axial blower

Displacement of OoP vibration pattern at 38.2 Hz:

Analysis of pattern reveals

- deformation of blade in vibration pattern noticeable \rightarrow 1F-mode
- blades vibrate with relative phase difference
 - nodal diameter 2 dominant
 - possibly superposition of several nodal diameters

CA3ViAR DE #1

- Advanced optical
- techniques for fan
- deformation and noise

- **Motivation**
- DIC

- propagation
- measurements

- PSP
- Conclusions

Leibniz 10 Universität 100 Hannover

Jan Gößling September 6th, 2022 slide 16 / 37 © Leibniz Universität Hannover 2022

Digital Image Correlation (DIC) – Axial blower

Displacement of OoP vibration pattern at 66.03 Hz

Complex vibrational pattern

- displacement with different phase angles at single blade tip ٠
- possibly superposition of several modes (e.g. 1T/2F) • Modal analysis would be required to identify mode shapes.

CA3ViAR DE #1

- Advanced optical
- techniques for fan
- deformation and noise
- propagation
- measurements
- Motivation
- DIC
- PSP
- Conclusions

Jan Gößling September 6th, 2022 **slide 17 / 37** © Leibniz Universität Hannover 2022

Digital Image Correlation (DIC) – Conclusions

- Conclusions of DIC pre-tests
- general applicability of high-speed DIC demonstrated
- setup validated in bending-beam test case
- blade mode successfully extracted by subtracting rigid body motion
- spatial vibration pattern analysis in frequency domain
- → Instrumentation concept for CA3ViAR measurement is derived from DIC pre-tests.
- \rightarrow Reference measurements with strain gauges will be used for CA3ViAR.

CA3ViAR DE #1

Advanced optical

- techniques for fan
- deformation and noise
- propagation
- measurements
- Motivation
- DIC
- PSP
- Conclusions

Jan Gößling September 6th, 2022 **slide 18 / 37** © Leibniz Universität Hannover 2022

Digital Image Correlation (DIC)

- Optimisation of ...
 - camera positioning
 - speckle pattern plus labelling
 - marker tracking
 - ... using 3D rendering
- Test of speckle pattern application on composite surface
 - correlation quality based on reflection and contrast
 - small influence on surface

Correlation of left and right camera (3D-rendering)

Fluorescent paint on CFRP surface

CA3ViAR DE #1

Advanced optical

- techniques for fan
- deformation and noise
- propagation
- measurements

Acoustic measurements by Pressure-Sensitive Paint (PSP)

Jan Gößling September 6th, 2022 slide 19 / 37

CA3ViAR DE #1

Advanced optical

- techniques for fan
- deformation and noise
- propagation
- measurements

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 slide 20 / 37 © Leibniz Universität Hannover 2022

Aim: Design an extended PSP-Intake to measure tonal noise propagating upstream of the rotor.

- Perform spatial measurement of sound pressure at intake duct wall up to 5 kHz.
- Analyse pressure distribution and compare it to computational aeroacoustics (CAA) simulation.
- Use microphone reference measurements.

Pressure-sensitive paint (PSP)

Challenge: Sufficient resolution of acoustic fluctuations at high frequencies with PSP → Pre-Test

CA3ViAR DE #1

Advanced optical

- techniques for fan
- deformation and noise
- propagation
- measurements

Motivation

- DIC
- PSP
- Conclusions

Jan Gößling September 6th, 2022 slide 21 / 37 © Leibniz Universität Hannover 2022

Pressure-sensitive paint (PSP) – Principle

Pressure-sensitive paint is an optical measurement technique based on the luminescence of molecules (luminophore).

<u>Principle</u>

- excitation of luminophore with light of specific wavelength (395 nm)
- release of energy by emitting light with increased wavelength (650 nm)

Or

- release of energy to oxygen molecule due to oxygen quenching without light emission
- probability of oxygen quenching proportional to oxygen concentration

Intensity of luminescence is inversely proportional to surface pressure.

CA3ViAR DE #1

Advanced optical

- techniques for fan
- deformation and noise
- propagation
- measurements

Motivation

- DIC
- PSP

Conclusions

Excitation Detector Source (PMT,CCD,CMOS,etc.) (Laser, LED) Filter Binder Luminophore polymer/ceramic

Model Surface

Jan Gößling September 6th, 2022 **slide 22 / 37** © Leibniz Universität Hannover 2022 Pressure-sensitive paint (PSP) – Test setup

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 slide 23 / 37

© Leibniz Universität Hannover 2022

Pressure-sensitive paint (PSP) – Test setup

Pre-test in Aeroacoustic wind tunnel (AWT) Simplified test environment for aeroacoustic analysis under aero engine-like conditions

Specifications

- max. mass flow rate $\dot{m} = 25$ kg/s
- Reynolds number $ext{Re}_{D} \leq 6,2 \cdot 10^{6}$
- max. pressure ratio
- diameter of test section D = 500 mm
- background noise < 70 dB(A) at u_{∞} = 40 m/s
- 360° access to measurement section
- homogenous, axial inflow

Applications/Fields of research

development and test of aeroacoustic measurement and analysis

 $p/p_U \le 6$

- validation of numerical and analytical sound propagation model
- sound transmission through ring cascade

Measurement section of AWT at new campus

- 1. Bartelt, M., Meinzer, C.E., Laguna, J.D., Seume, J.R. (2012): Design Methodology and Experimental Validation of an Aeroacoustic Test Rig for Turbomachinery Applications. , ISUAAAT-S12-4, Tokyo, 2012
- 2. Bartelt, M.; Seume, J. R. (2011): Auslegung und Optimierung eines Aeroakustik-Kanals für Turbomaschinenanwendungen unter Verwendung numerischer Methoden, DGLR-Kongress, 27.-29. Sep. 2011, Bremen

CA3ViAR DE #1

Advanced optical

- techniques for fan
- deformation and noise
- propagation
- measurements

Pressure-sensitive paint (PSP) – Test setup

Instrumentation of PSP measurements:

- Porous-ceramic PSP paint by ISSI
- Photron Fastcam SA-X2
 - 1 MPx resolution
 - 10 kHz frame rate
 - 21839 images per measurement
- Band pass filter CWL 650 nm ± 10nm
- UV-LED: 4x HARDsoft IL-107 UV in continuous wave mode

Excitation of spinning acoustic modes with frequencies up to 5 kHz. Measurement on inner duct wall surface with PSP and reference microphones.

Measurement on inner duct wall surface with PSP and reference microp

Jan Gößling September 6th, 2022 **slide 24 / 37** © Leibniz Universität Hannover 2022

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 **slide 25 / 37** © Leibniz Universität Hannover 2022

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 **slide 26 / 37**

© Leibniz Universität Hannover 2022

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 slide 27 / 37

© Leibniz Universität Hannover 2022

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

l l Leibniz i o 2 Universität i o o 4 Hannover

Jan Gößling September 6th, 2022 **slide 28 / 37** © Leibniz Universität Hannover 2022

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 **slide 29 / 37** © Leibniz Universität Hannover 2022

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 slide 30 / 37

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

propagation

measurements

Motivation

DIC

PSP

Conclusions

Jan Gößling September 6th, 2022 **slide 31 / 37** © Leibniz Universität Hannover 2022

Pressure-sensitive paint (PSP) – Data Analysis

-500

CA3ViAR DE #1

Advanced optical techniques for fan

- deformation and noise
- propagation
- measurements

Motivation

- PSP
- Conclusions

1 1 Leibniz 102 Universität 1024 Hannover

Jan Gößling September 6th, 2022 **slide 32 / 37**

© Leibniz Universität Hannover 2022

Pressure-sensitive paint (PSP) – Results

Acoustic excitation of circumferential mode -6 at 1800 Hz at Ma = 0.1 Measured spatial pressure distribution:

- maximum pressure amplitude below 150 Pa
- circumferential mode order -6 dominant
- interference observed \rightarrow superposition of different modes expected due to reflection

CA3ViAR DE #1

Advanced optical techniques for fan deformation and noise

- propagation
- measurements

Motivation DIC **PSP**

Conclusions

Jan Gößling September 6th, 2022 slide 34 / 37

© Leibniz Universität Hannover 2022

Pressure-sensitive paint (PSP) – Results

Acoustic excitation of circumferential mode 8 at 2900 Hz at Ma = 0.1 Measured spatial pressure distribution:

- maximum pressure amplitude below 400 Pa
- superposition of circumferential mode order -8/8 dominant
- interference observed → superposition of different modes expected due to reflection (expected to occur in CA3ViAR test)

CA3ViAR DE #1

- Advanced optical
- techniques for fan
- deformation and noise
- propagation
- measurements

Motivation

- DIC
- PSP
- Conclusions

Jan Gößling September 6th, 2022 slide 36 / 37

© Leibniz Universität Hannover 2022

Pressure-sensitive paint (PSP) – Conclusions

- Conclusions of PSP pre-test
- general applicability of PSP is shown
- spatial pressure information visualizes acoustic field
- dense pressure information with high potential for further analysis (e.g. radial mode analysis)

Instrumentation concept for CA3ViAR measurement is elaborated based on PSP pre-tests.

- CA3ViAR DE #1
- Advanced optical
- techniques for fan
- deformation and noise
- propagation
- measurements
- Motivation
- DIC
- PSP
- Conclusions

Jan Gößling September 6th, 2022 **slide 37 / 37** © Leibniz Universität Hannover 2022

Conclusions and outlook

Successfully tested DIC and PSP for application in CA3ViAR to measure deformation and surface sound pressure.

Detailed test concepts elaborated based on pre-tests.

Both optical techniques show great potential to analyse aeroelastic and aeroacoustic fan performance.

Spatial information on pressure visualises data for detailed interpretation and analysis.

Outlook for future work:

- Possibility to analyse transient effects (PSP & DIC).
- Potential to measure unsteady excitation (PSP) and response (DIC) over full surface.
- Application of artificial intelligence to analyse data (PSP & DIC).
- Application on stator vanes (PSP & DIC) and rotor blades (PSP).

CA3ViAR DE #1

Advanced optical

techniques for fan

deformation and noise

Acknowledgement:

propagation

measurements

Thank you for your attention!

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No 864256. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union. This is gratefully acknowledge by the authors.

https://www.ca3viar-project.eu/

Jan Gößling September 6th, 2022 **slide 38 / 37** © Leibniz Universität Hannover 2022