

INFRa Rig + Propulsion Test Facility (PTF)

Brunow, Friedrichs, Grubert, Eggers

Institute of Jet Propulsion and Turbomachinery

TU Braunschweig

CA3ViAR Dissemination Event, 6. September 2022

Agenda

Technische Universität Braunschweig

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 2

) Motivation / Introduction

PTF Layout and Specs

) INFRa Rig

Measurement Technology

Status Quo

Technische Universität Braunschweig

Motivation

• Improve propulsive efficiency

• Larger nacelles, shorter Intakes

• Focus: Fan intake interaction

Safe operation on entire flight envelope

• Off-design (distortion, CW, high AoA)

Fig 1: Rolls-Royce Ultrafan [1]

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 4

Motivation

Intake tests (ONERA F1)

Fan stage test rig (DLR Cologne)

How to combine these disciplines into one experimental setup?

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 5 IFAS

Technische Universität Braunschweig

Slide 6

06.09.2022 | P. Brunow | CA3ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility |

PTF - Layout

- Powered Propulsor (E-Machine) 2.000 KW

Key components: F1: Fan-rig drive F2: Windtunnel headwind F3: Windtunnel crosswind

Fig. 3: Facility layout, cross section

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 7

PTF - CAD Model

Fig. 4: Facility mock-up without concrete shell

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 8

PTF - Crosswind Concept

Crosswind duct

- Flow enters the crosswind duct through door 1
- Flow is divided into an upper and a lower flow
- Duct is powered by four blowers
- Flow enters the test section through door 2

Fig. 5: Cross sections of crosswind duct

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 9

PTF - Generation of Inlet Distortions:

- Combination of incoming flow v_{∞} und crosswind flow v_{cw}
- Crosswind flow leads to a blocking area
- Blocking area leads to an angle of attack α for the incoming flow
- Angle of attack **α** leads to diffusor inlet separations of the test object
- Crosswind mass flow & shear layer must not enter the test object
- Crosswind angle α can be increased up to 90° (without main flow)

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 10

PTF - Test Section (with Mock-Up)

Fig. 7: Facility layout with mock-up

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 11

PTF - Test Section Dimensions

Fig. 8: Facility test section with aspirated intake setup

Slide 12

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility |

Fig. 9: Photo of aspirated intake

Setup for Aspirated Intake Tests

Fig. 11: Aspirated intake setup in test tunnel

Slide 13

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility |

FΔ

Experimental spectrum

Slide 14

Fig. 12: PTF experimental spectrum

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 15

INFRa – Rig: Overview

- Generic, non-IP-protected test vehicle
- Cold engine cycle
- Modularity
- Close coupling of fan and intake aerodynamics
- Fan throttling
- Increased size (fan Ø650mm)
- More extensive DAQ
 - Kulites
 - Fan monitoring (telemetry, strain gauges, ...)
 - TT / TC
 - Measurement Rakes (compressor performance)
 - PIV / DIC

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 16

INFRa – Rig: Modules

INFRa – Rig: Fan Design

E-Machine:

• Max. power of 2 MW @ 8.000 rpm

Fan-Parameter:

- FPR:
 1,32 (1,37@cruise)

 Tip speed:
 < 275 m/s</td>

 Ø:
 650 mm

 HTTR:
 0,26
- Rotor blades:
- Stator blades:
- Tip gap:

40 0,5 mm

18

Fig. 15: INFRa-Rig in test tunnel

Fig. 16: INFRa fan design

S Institut für Flugantriebe und Strömungsmaschinen

→ CA³ViAR fan replaces INFRa fan

•

.

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 18

PTF Layout and Specs

INFRa Rig

) Measurement Technology

Status Quo

Technische Universität Braunschweig

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 19

INFRa – Rig: Instrumentation

Instrumentation consists of:

- Highly instrumentated intake section
- Fan section monitored by BTT and BTC, strain gauges on blades and unsteady pressure transducers
- Stage performance evaluated by 4 rakes
- Mass flow measurement by correlation with bellmouth intake and throttle
- Telemetry to transmit data from the rotating system
- Vibration and temperature sensors for operational monitoring of the rig
- PIV and DIC

Fig. 17: Overview INFRa Rig instrumentation

Particle Image Velocimetry (PIV) Test Setup

Principle of PIV:

- Optical measurement technique to measure flow behavior
- Seeding the flow and capturing the particles passing a laser plane in two timesteps

Challenges / Setup

- PIV in horizontal plane
- Laser access via transparent door/window
- Seeding necessary only in a linear array

Fig. 18: PIV setup in PTF test tunnel

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 21

Digital Image Correlation (DIC) – Pre-Test

Principle of DIC:

- Optical measurement technique to measure surface deformations
- Corresponding points on the surface are detected via image correlation
- Calibration of two cameras required

Fig. 19: DIC Scheme and Pre-Test Setup

Challenges in CA³ViAR:

echnische

Universität

Braunschweig

- High sampling rates ($f_s > 1000 \text{ Hz}$) due to blade eigenfrequencies & rotational speed
- Short exposure times ($t_{exp} < 1.78 \ \mu s$) to eliminate motion blur
- A new high-speed DIC setup had to be arranged and tested
- Successfully measured deformation and vibration on rotating industrial fan
- Next Step: Implementation inside PTF

Slide 22

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility

PTF Layout and Specs

) INFRa Rig

Measurement Technology

Status Quo

Technische Universität Braunschweig

Status Quo: Intake (long)

Technische

Universität

Braunschweig

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 24

Status Quo: Blisk

Technische Universität 06.09.2022 Braunschweig Slide 25

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 25

Status Quo: OGV

Fig. 22: Photo OGV section and fan case

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 26

Status Quo: Measurement Section

Fig. 23: Photo of rake and measurement section

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 27

Status Quo: Spindle / Strut Case

Fig. 24: Photos of strut assembly and spindle

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 28

Status Quo: Main Structure

Fig. 25: Photos of strut assembly inside the test tunnel

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 29

Status Quo: Throttle

Slide 30

06.09.2022 | P. Brunow | CA3ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility |

Status Quo: Inner Contur

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 31

n Test Facility | IFAS Instit

Status Quo: Support Structure

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 32

Next steps

- Concrete filling @supports
- Installation of adapter shafts
- Balancing
- Throttle actuation
- Actuated measurement section

Summary / Outlook

- Facility / test vehicle / DAQ overview
- Facility commisioned via successful aspirated intake campaigns
- INFRa installation ongoing \rightarrow Commissioning end of 2022

Sources:

- (1) www.rolls-royce.com
- (2) ONERA F1 Windtunnel, South France
- (3) DLR UHBR Test Rig for Compressor Test Rig M2VP, Cologne
- (4) LU Hannover, J. Gößling

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 34

Thank you for your attention!

06.09.2022 | P. Brunow | CA³ViAR Dissemination Event: INFRa Rig & Propulsion Test Facility | Slide 35

Acknowledgements

The results of this work were generated by the cooperation between IFAS of TU Braunschweig, the German Aerospace Center (DLR) and Rolls-Royce Germany.

Financial support from the European regional development fund (EFRE) is gratefully acknowledged for funding of the INFRaproject. The authors hereby express their gratitude for the support.

EUROPÄISCHE UNION

